Heun Functions: powerhouse of special functions in the 21st century
1. HeunG (General Heun Equation)
If we impose boundary conditions at both $z=0$ and $z=1$, we have an eigenvalue problem. A Heun polynomial is a solution regular at $z=0$, $1$, and $t$, which is beyond an eigenvalue problem.
2. HeunC (Confluent Heun Equation)
HeunC in Wolfram, HeunC in DLMF
HeunC in Maple uses another form
\[ y''(z) - \frac{\left(-z^2\alpha + (-\beta + \alpha - \gamma - 2) z + \beta + 1\right)}{z(z - 1)}y'(z) - \frac{\left(((-\beta - \gamma - 2)\alpha - 2\delta) z + (\beta + 1)\alpha + (-\gamma - 1)\beta - 2\eta - \gamma\right)}{2 z(z - 1)}y(z) = 0 \]HeunRC (Reduced Confluent Heun Equation)
3. HeunD (Doubly Confluent Heun Equation)
The symmetric canonical form is $$ D^2 y+ \alpha \left( z + \frac{1}{z} \right) D y+\left((\beta_1+\frac12)\alpha z+(\frac{\alpha^2}{2}-\gamma)+(\beta_{-1}-\frac12)\frac{\alpha}{z}\right)y(z)=0 \rlap{\qquad\text{where } D\equiv z\frac{d}{dz}} $$ The second and first derivative part is $z^2y''(z)+(z+\alpha z^2+\alpha)y'(z)$. The symmetric canonical form is useful to make connections to the Mathieu equation.
\[\llap{\text{DLMF:}\qquad} \frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+\left(\frac{\delta}{z^{2}}+\frac{% \gamma}{z}+1\right)\frac{\mathrm{d}w}{\mathrm{d}z}+\frac{\alpha z-q}{z^{2}}w=0.\]HeunRD (Reduced Doubly Confluent Heun Equation)
HeunDD (Doubly Reduced Doubly Confluent Heun Equation)
4. HeunB (Biconfluent Heun Equation)
HeunRB (Reduced Biconfluent Heun Equation)
5. HeunT (Triconfluent Heun Equation)
HeunRT (Reduced Triconfluent Heun Equation)
Mathieu equation
Resources
Books
[1] A. Ronveaux (Ed.), Heun's Differential Equations (Oxford University Press, Oxford; New York, 1995).
[2] S. Yu. Slavyanov and W. Lay, Special Functions: A Unified Theory Based on Singularities (Oxford University Press, Oxford; New York, 2000).
Papers
Heun related papers on arXiv: all | math | physics
K. Heun, Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten, Math. Ann. 33, 161 (1888).
R. S. Maier, The 192 solutions of the Heun equation, Math. Comp. 76, 811 (2006) [arXiv:math/0408317].
O. Lisovyy and A. Naidiuk, Accessory parameters in confluent Heun equations and classical irregular conformal blocks, Lett Math Phys 111, 137 (2021) [arXiv:2101.05715].
O. Lisovyy and A. Naidiuk, Perturbative connection formulas for Heun equations, J. Phys. A: Math. Theor. 55, 434005 (2022) [arXiv:2208.01604].
G. Bonelli, C. Iossa, D. P. Lichtig and A. Tanzini, Irregular Liouville correlators and connection formulae for Heun functions, Commun. Math. Phys. 397, 635 (2023) [arXiv:2201.04491].
Online resources
Wolfram: Summary of Special Functions | All Mathematical Functions (long)
Hypergeometric ruled the 20th century—Heun is shaping the 21st.
Biography of Karl Heun on MacTutor
Contact: [email protected] (This site is under construction. Comments are welcome.)