Skip to content

SO(3) ↔ Virasoro: a comparison for conformal blocks

Virasoro conformal blocks are the 2D CFT analogue of partial waves. If you can add angular momenta and use CG/6j symbols, you already know the blueprint: blocks are kinematical, structure constants are dynamical.

TopicSO(3) / SU(2)Virasoro
SymmetryRotations in 3DLocal conformal symmetry in 2D
GeneratorsJ0,J±J_0, J_\pm with [J0,J±]=±J±[J_0,J_\pm]=\pm J_\pm, [J+,J]=2J0[J_+,J_-]=2J_0LnL_n with [Lm,Ln]=(mn)Lm+n+c12m(m21)δm+n,0[L_m,L_n]=(m-n)L_{m+n}+\dfrac{c}{12}m(m^2-1)\delta_{m+n,0}
InvariantQuadratic Casimir J2=j(j+1)\mathbf{J}^2 = j(j+1)Central charge cc; no finite Casimir; reps labeled by highest weight Δ\Delta
RepsFinite‑dimensional spins j=0,12,1,j=0,\tfrac12,1,\dotsHighest‑weight Verma modules VΔ\mathcal{V}_\Delta (infinite‑dimensional); nulls at special Δ\Delta
Highest‑weightj,m\lvert j,m\rangle with J+j,j=0J_+\lvert j,j\rangle=0Δ\lvert\Delta\rangle with Ln>0Δ=0L_{n>0}\lvert\Delta\rangle=0, L0Δ=ΔΔL_0\lvert\Delta\rangle=\Delta\lvert\Delta\rangle
DescendantsLadder by JJ_-: 2j+12j+1 statesStrings of LnL_{-n}: infinite tower by level N=nN=\sum n
Inner productPositive‑definite; orthonormal j,m\lvert j,m\rangleShapovalov (Gram) form on descendants; invert GNG_N by level
Tensor product / OPEj1j2=j_1\otimes j_2=\bigoplus_\ell \ellϕ1×ϕ2=disc. or dΔpVΔp\phi_1 \times \phi_2 = \sum_{\text{disc.}}\ \text{or}\ \int d\Delta_p\, \mathcal{V}_{\Delta_p} (Liouville: continuous)
3‑point kinematicsCG/3j symbols (fixed by symmetry)Ward identities fix descendant couplings; dynamics in CijkC_{ijk} (DOZZ in Liouville)
Partial wavesLegendre P(cosθ)P_\ell(\cos\theta)Conformal blocks F(c,Δi,Δp;z)\mathcal{F}(c,\Delta_i,\Delta_p;z)
4‑pt decompositionA(θ)=(2+1)aP\mathcal{A}(\theta)=\sum_\ell (2\ell+1) a_\ell\, P_\ell1234=dΔpC12pCp34F(z)F(zˉ)\langle 1234\rangle=\int d\Delta_p\, C_{12p}C_{p34}\, \mathcal{F}(z)\,\overline{\mathcal{F}}(\bar z)
Recoupling / crossingRacah/Wigner 6j6j symbolsFusion kernel (Virasoro “6j6j”, Ponsot–Teschner)
Global subalgebraWhole algebrasl2={L1,L0,L+1}\mathfrak{sl}_2=\{L_{-1},L_0,L_{+1}\}
Global blockPP_\ell hypergeometric formFglobal=zΔpΔ1Δ22F1(Δp+Δ12,Δp+Δ34;2Δp;z)\mathcal{F}_{\text{global}}=z^{\Delta_p-\Delta_1-\Delta_2}\,{}_2F_1(\Delta_p+\Delta_{12},\Delta_p+\Delta_{34};2\Delta_p;z)
Selection rulesTriangle inequalitiesOnly with degenerate fields; generic fusion otherwise
Spectrum typeDiscrete over \ellLiouville: continuous Δp=Q24+P2\Delta_p=\dfrac{Q^2}{4}+P^2, PR0P\in\mathbb{R}_{\ge0}
SemiclassicsLarge jj / eikonalLarge cc (heavy–light, monodromy); global limit cc\to\infty

  • Primary ↔ spin highest‑weight. Primary ϕΔ\phi_\Delta corresponds to j,j\lvert j,j\rangle. Descendants are LnL_{-n} ladders (many per level) vs one JJ_- ladder.
  • OPE ↔ tensor product. ϕ1×ϕ2\phi_1\times\phi_2 projects onto intermediate Δp\Delta_p, just as j1j2j_1\otimes j_2 projects onto \ell.
  • Block ↔ partial wave. For fixed (c,Δi,Δp)(c,\Delta_i,\Delta_p), F\mathcal{F} is universal (symmetry only), like PP_\ell.
  • Crossing ↔ recoupling. Changing channel (12)(34)(13)(24)(12)(34)\to(13)(24) is controlled by a kernel (Virasoro 6j), as SU(2) recoupling uses Wigner 6j.

Four‑point factorization: global vs full Virasoro

Section titled “Four‑point factorization: global vs full Virasoro”

Global (SL(2)) block — the Legendre look‑alike

Section titled “Global (SL(2)) block — the Legendre look‑alike”

With Δ12=Δ1Δ2\Delta_{12}=\Delta_1-\Delta_2 and Δ34=Δ3Δ4\Delta_{34}=\Delta_3-\Delta_4,

Fglobal(Δi,Δp;z)=zΔpΔ1Δ2  2F1 ⁣(Δp+Δ12, Δp+Δ34; 2Δp; z).\mathcal{F}_{\text{global}}(\Delta_i,\Delta_p;z) = z^{\Delta_p-\Delta_1-\Delta_2}\; {}_2F_{1}\!\big(\Delta_p+\Delta_{12},\ \Delta_p+\Delta_{34};\ 2\Delta_p;\ z\big).

This is the cc\to\infty limit of Virasoro blocks with fixed dimensions (only L±1,0L_{\pm1,0} descendants contribute).

Full Virasoro block — summing all descendants

Section titled “Full Virasoro block — summing all descendants”

At level NN, descendants are labeled by partitions YY of NN (e.g. Y=(2,1,1)Y=(2,1,1) stands for L2L12L_{-2}L_{-1}^2). Using Ward identities,

F(c,Δi,Δp;z)=zΔpΔ1Δ2N=0zNY=Y=NV1V2LYΔp(GN1)Y,YΔpLYV3V4V1V2ΔpΔpV3V4.\mathcal{F}(c,\Delta_i,\Delta_p; z) = z^{\Delta_p-\Delta_1-\Delta_2}\sum_{N=0}^\infty z^N \sum_{\lvert Y\rvert=\lvert Y'\rvert=N} \frac{\langle V_1 V_2\, \mathcal{L}_{-Y}\lvert\Delta_p\rangle\, (G_N^{-1})_{Y,Y'}\, \langle \Delta_p\rvert \mathcal{L}_{Y'} V_3 V_4\rangle} {\langle V_1V_2\lvert\Delta_p\rangle\,\langle \Delta_p\rvert V_3V_4\rangle}.
  • Level 0: 11.
  • Level 1: basis {L1Δp}\{L_{-1}\lvert\Delta_p\rangle\}; G1=2ΔpG_1=2\Delta_p, F=zΔpΔ1Δ2[1+(Δp+Δ12)(Δp+Δ34)2Δpz+].\mathcal{F}=z^{\Delta_p-\Delta_1-\Delta_2}\Big[1+\frac{(\Delta_p+\Delta_{12})(\Delta_p+\Delta_{34})}{2\Delta_p}\,z+\cdots\Big]. (Matches the global block at order z1z^1.)
  • Level 2: basis {L2Δp, L12Δp}\{L_{-2}\lvert\Delta_p\rangle,\ L_{-1}^2\lvert\Delta_p\rangle\}, G2=(4Δp+c26Δp6Δp4Δp(2Δp+1)),G_2=\begin{pmatrix} 4\Delta_p+\tfrac{c}{2} & 6\Delta_p\\[2pt] 6\Delta_p & 4\Delta_p(2\Delta_p+1) \end{pmatrix}, where L2L_{-2} produces the first genuine Virasoro correction.

Key idea. Global vs Virasoro differs precisely by the tower of Ln2L_{-n\ge2} descendants organized by the Gram matrix.


In Liouville, the intermediate primary is labeled by PR0P\in\mathbb{R}_{\ge0} with

Δp=Q24+P2,Q=b+1b,c=1+6Q2.\Delta_p=\frac{Q^2}{4}+P^2,\qquad Q=b+\frac1b,\qquad c=1+6Q^2.

The sphere four‑point correlator is a partial‑wave integral

Vα1()Vα2(1)Vα3(z,zˉ)Vα4(0)=0 ⁣dP  C(α1,α2,Q2+iP)C(α3,α4,Q2iP)F(c,Δi,Δp;z)2,\langle V_{\alpha_1}(\infty)V_{\alpha_2}(1)V_{\alpha_3}(z,\bar z)V_{\alpha_4}(0)\rangle = \int_0^\infty \! dP\; C(\alpha_1,\alpha_2,\tfrac{Q}{2}+iP)\, C(\alpha_3,\alpha_4,\tfrac{Q}{2}-iP)\, \big|\mathcal{F}(c,\Delta_i,\Delta_p; z)\big|^2,

where blocks are kinematics and DOZZ structure constants CC encode dynamics.


  • Build GNG_N and its inverse for N=1,2,3N=1,2,3.
  • Use Ward identities for descendant numerators.
  • Ideal for checks, identical external weights, and intuition.

2) Zamolodchikov’s elliptic qq‑recursion (fast & robust)

Section titled “2) Zamolodchikov’s elliptic qqq‑recursion (fast & robust)”

Introduce the elliptic nome

q(z)=exp ⁣(πK(1z)K(z)),K=complete elliptic integral.q(z)=\exp\!\Big(-\pi\,\frac{K(1-z)}{K(z)}\Big),\qquad K=\text{complete elliptic integral}.

Then

F(c,Δi,Δp;z)=Λ(c,Δi,Δp;z)H(c,Δi,Δp;q),\mathcal{F}(c,\Delta_i,\Delta_p; z)= \Lambda(c,\Delta_i,\Delta_p; z)\, H(c,\Delta_i,\Delta_p; q),

with a simple prefactor Λ\Lambda and a meromorphic series

H=1+m,n1(16q)mnRm,n(Δi,c)ΔpΔm,n(c)H(c,Δi,Δm,n(c)+mn; q),H=1+\sum_{m,n\ge1} \frac{(16q)^{mn}\, R_{m,n}(\Delta_i,c)}{\Delta_p-\Delta_{m,n}(c)}\, H\big(c,\Delta_i,\Delta_{m,n}(c)+mn;\ q\big),

where Δm,n(c)=Q2(mb+n/b)24\Delta_{m,n}(c)=\dfrac{Q^2-(mb+n/b)^2}{4} and residues Rm,nR_{m,n} come from degenerate fusion. Why it’s good: q(z)1\lvert q(z)\rvert\ll1 on most of the zz‑plane ⇒ rapid convergence.

3) BPZ differential equations (degenerate insertion)

Section titled “3) BPZ differential equations (degenerate insertion)”

If one external is degenerate (e.g. α=b2\alpha=-\tfrac{b}{2} or 12b-\tfrac{1}{2b}), the chiral piece satisfies a second‑order Fuchs ODE. Solutions are hypergeometric in the simplest case; monodromy picks the internal Δp\Delta_p. This is the closest analogue to strong SU(2) selection rules.

AGT equates the Virasoro chiral block with the instanton partition function of 4d N=2\mathcal{N}=2 SU(2) with Nf=4N_f=4 in an Ω\Omega‑background. A practical dictionary (one consistent choice):

b=ε1ε2,Q=b+1b,α=Q2+aε1ε2,αi=Q2+miε1ε2,q=z.b=\sqrt{\frac{\varepsilon_1}{\varepsilon_2}},\quad Q=b+\frac1b,\quad \alpha=\frac{Q}{2}+\frac{a}{\sqrt{\varepsilon_1\varepsilon_2}},\quad \alpha_i=\frac{Q}{2}+\frac{m_i}{\sqrt{\varepsilon_1\varepsilon_2}},\quad q=z.
  • Compute the Nekrasov instanton series Zinst(a,mi,qε1,2)Z_{\text{inst}}(a,m_i,q\mid\varepsilon_{1,2}) by summing over pairs of Young diagrams.
  • Remove the decoupled U(1)U(1) if you start from U(2)U(2) expressions.
  • Assemble the block with a minimal prefactor so that F(z)=zΔpΔ1Δ2(1+K1cKzK),\mathcal{F}(z)=z^{\Delta_p-\Delta_1-\Delta_2}\Big(1+\sum_{K\ge1}c_K z^K\Big), where cKc_K are the instanton coefficients. Use cases: fast numerics, high‑order series, cross‑checks for recursion/monodromy.

Crossing as recoupling: the Virasoro “6j6j

Section titled “Crossing as recoupling: the Virasoro “6j6j6j””

Changing channel is implemented by the fusion kernel

Fs(Δp;z)=dΔp F ⁣[Δ1 Δ2Δ3 Δ4  Δp ⁣ ⁣Δp]Ft(Δp;1z),\mathcal{F}_s(\Delta_p; z)=\int d\Delta_{p'}\ \mathbf{F}\!\left[ \begin{smallmatrix} \Delta_1\ \Delta_2\\[-2pt] \Delta_3\ \Delta_4 \end{smallmatrix} \ \Big|\ \Delta_p\!\to\!\Delta_{p'}\right]\, \mathcal{F}_t(\Delta_{p'}; 1-z),

the Virasoro analogue of Wigner–Racah 6j6j. In Liouville this kernel is known (Ponsot–Teschner) and enforces crossing symmetry.


Worked checkpoint: identical external weights

Section titled “Worked checkpoint: identical external weights”

Let Δi=Δ\Delta_i=\Delta. Then Δ12=Δ34=0\Delta_{12}=\Delta_{34}=0.

  • Global Fglobal=zΔp2Δ2F1(Δp,Δp;2Δp;z)=zΔp2Δ[1+Δp2z+Δp(Δp+1)4(2Δp+1)z2+].\mathcal{F}_{\text{global}}=z^{\Delta_p-2\Delta}\,{}_2F_1(\Delta_p,\Delta_p;2\Delta_p;z) = z^{\Delta_p-2\Delta}\left[1+\frac{\Delta_p}{2}z+\frac{\Delta_p(\Delta_p+1)}{4(2\Delta_p+1)}z^2+\cdots\right].
  • Virasoro (level 2)
    The z2z^2 coefficient differs from the global value by cc‑dependent terms via L2L_{-2}. As cc\to\infty this difference disappears, recovering the global block.

Use this as a unit test for any implementation.


  • Kinematics vs dynamics. Blocks depend only on (c,Δi,Δp)(c,\Delta_i,\Delta_p), not on DOZZ normalizations.
  • Channel confusion. ss‑ and tt‑channel blocks are related by a kernel, not equality.
  • Global vs Virasoro. They coincide at level 1; differences start at level 2 via L2L_{-2}.
  • Selection rules. Generic Virasoro fusion has no SU(2)‑like triangle rule; selection arises only with degenerate fields.
  • Liouville spectrum. Integrate over PP (continuous), not a sum over discrete \ell.
  • Normalize three‑point factors so the block starts as zΔpΔ1Δ2(1+)z^{\Delta_p-\Delta_1-\Delta_2}(1+\cdots).