Skip to content

Local solutions

The standard form of the Heun equation is

d2ydz2+(γz+δz1+ϵzt)dydz+αβzqz(z1)(zt)y=0,\frac{d^{2}y}{dz^{2}}+\left(\frac{\gamma}{z}+\frac{\delta}{z-1}+\frac{\epsilon}{z-t}\right)\frac{dy}{dz}+\frac{\alpha\beta z-\mathsf{q}}{z(z-1)(z-t)}y=0\,,

where ϵ=α+βγδ+1\epsilon=\alpha+\beta-\gamma-\delta+1 and q\mathsf{q} is the accessory parameter. The four regular singular points {0,1,t,}\{0,1,t,\infty\} and the corresponding exponents are represented by the Riemann scheme as

y=P{01t000α;z1γ1δ1ϵβ}.y=P \begin{Bmatrix} 0 & 1 & t & \infty & {}\\ 0 & 0 & 0 & \alpha & ;z\\ 1-\gamma & 1-\delta & 1-\epsilon & \beta & \end{Bmatrix}.

The two linearly independent solutions near z=0z=0 are

y1[0]=H ⁣(t,q;α,β,γ,δ;z),y2[0]=z1γH ⁣(t,(tδ+ϵ)(1γ)+q;α+1γ,β+1γ,2γ,δ;z).\begin{aligned} y^{[0]}_{1} &= H\!\ell \bigl(t,\mathsf{q};\alpha,\beta,\gamma,\delta;z\bigr),\\ y^{[0]}_{2} &= z^{1-\gamma}\,\mathit{H\!\ell}\bigl(t, (t\delta+\epsilon)(1-\gamma) + \mathsf{q}; \alpha+1-\gamma, \beta+1-\gamma, 2-\gamma, \delta; z\bigr). \end{aligned}

where H ⁣H\!\ell denotes a local Heun function, i.e., it satisfies one boundary condition at z=0z=0, but generally does not satisfy the boundary condition at z=1z=1. The two linearly independent solutions near z=1z=1 are

y1[1]=H ⁣(1t,αβq;α,β,δ,γ;1z),y2[1]=(1z)1δH ⁣(1t,((1t)γ+ϵ)(1δ)+αβq;α+1δ,β+1δ,2δ,γ;1z).\begin{aligned} y^{[1]}_{1} &= H\!\ell \bigl(1-t, \alpha\beta - \mathsf{q}; \alpha, \beta, \delta, \gamma; 1-z\bigr),\\ y^{[1]}_{2} &= (1-z)^{1-\delta}\,\mathit{H\!\ell}\bigl(1-t, ((1-t)\gamma+\epsilon)(1-\delta) + \alpha\beta - \mathsf{q}; \alpha+1-\delta, \beta+1-\delta, 2-\delta, \gamma; 1-z\bigr). \end{aligned}

Solutions to boundary value problems between z=0z=0 and z=1z=1 involve the connection formula between the two sets of solutions.

The normal form of the Heun equation is

(d2dz2+14θ02z2+14θ12(z1)2+14θt2(zt)2+θ02+θ12+θt2θ212z(z1)+(t1)(w2+θt2θ214)z(z1)(zt))ψ(z)=0,\begin{aligned} \Biggl(\frac{d^2}{dz^2}+\frac{\tfrac14-\theta_0^2}{z^2}+\frac{\tfrac14-\theta_1^2}{(z-1)^2}+\frac{\tfrac14-\theta_t^2}{(z-t)^2}+\frac{\theta_0^2+\theta_1^2+\theta_t^2-\theta_\infty^2-\tfrac12}{z(z-1)} + \frac{(t-1)\bigl(\mathsf{w}^2+\theta_t^2-\theta_\infty^2-\tfrac14\bigr)}{z(z-1)(z-t)}\Biggr)\psi(z)=0\,, \end{aligned}

which is related to the standard form by ψ(z)=z1/2θ0(1z)1/2θ1(1z/t)1/2θty(z)\psi(z)=z^{1/2-\theta_0}(1-z)^{1/2-\theta_1}(1-z/t)^{1/2-\theta_t}y(z) and

θ0=12(1γ),θ1=12(1δ),θt=12(1ϵ),θ=12(βα),(t1)w2+q+θ02+θ2t(θ0+θ112)2(θ0+θt12)2=0.\begin{aligned} & \theta_0 = \tfrac{1}{2}(1-\gamma),\qquad \theta_1 = \tfrac{1}{2}(1-\delta),\qquad \theta_t = \tfrac{1}{2}(1-\epsilon),\qquad \theta_\infty = \tfrac{1}{2}(\beta-\alpha),\\ & (t-1)\,\mathsf{w}^2+\mathsf{q}+\theta_0^2+\theta_\infty^2 - t\bigl(\theta_0+\theta_1-\tfrac{1}{2}\bigr)^2 - \bigl(\theta_0+\theta_t-\tfrac{1}{2}\bigr)^2 = 0\,. \end{aligned}

The four regular singular points and the corresponding exponents are represented by the Riemann scheme as

ψ=P{01t12θ012θ112θt12θ;z12+θ012+θ112+θt12+θ}.\psi=P \begin{Bmatrix} 0 & 1 & t & \infty & {}\\ \tfrac{1}{2}-\theta_0 & \tfrac{1}{2}-\theta_1 & \tfrac{1}{2}-\theta_t & \tfrac{1}{2}-\theta_\infty & ;z\\ \tfrac{1}{2}+\theta_0 & \tfrac{1}{2}+\theta_1 & \tfrac{1}{2}+\theta_t & \tfrac{1}{2}+\theta_\infty & \end{Bmatrix}.

The two linearly independent solutions near z=0z=0 are

ψ±[0]=z12θ0(1z)12θ1(1zt)12θtH ⁣(t,14+(1t)w2+t(12θ0θ1)2+θt2θ2θ0(12θt)θt;  1θ0θ1θtθ,1θ0θ1θt+θ,12θ0,12θ1,z).\begin{aligned} \psi^{[0]}_\pm &= z^{\frac{1}{2}\mp\theta_0}(1-z)^{\frac{1}{2}-\theta_1}\left(1-\frac{z}{t}\right)^{\frac{1}{2}-\theta_t}\, H\!\ell\Bigl(t, \tfrac14 + (1-t)\mathsf{w}^2 + t\bigl(\tfrac12\mp\theta_0-\theta_1\bigr)^2 + \theta_t^2 - \theta_\infty^2\\ &\quad \mp \theta_0(1-2\theta_t) - \theta_t; \; 1\mp\theta_0-\theta_1-\theta_t-\theta_\infty,\, 1\mp\theta_0-\theta_1-\theta_t+\theta_\infty,\, 1\mp 2\theta_0,\, 1-2\theta_1,\, z\Bigr). \end{aligned}

The two linearly independent solutions near z=1z=1 are

ψ±[1]=(1z)12θ1z12θ0(tzt1)12θtH ⁣(1t,34(1t)w2t(12θ0θ1)2+θ02+θ122θ1(1θ0θt)θ0θt;  1θ0θ1θtθ,1θ0θ1θt+θ,12θ1,12θ0;  1z).\begin{aligned} \psi^{[1]}_\pm &= (1-z)^{\frac{1}{2}\mp\theta_1}\, z^{\frac{1}{2}-\theta_0}\,\Bigl(\frac{t-z}{t-1}\Bigr)^{\frac{1}{2}-\theta_t}\, H\!\ell\Bigl(1-t, \tfrac34 - (1-t)\mathsf{w}^2 - t\bigl(\tfrac12-\theta_0\mp\theta_1\bigr)^2 + \theta_0^2 + \theta_1^2\\ &\quad \mp 2\theta_1\bigl(1-\theta_0-\theta_t\bigr) - \theta_0 - \theta_t; \; 1-\theta_0\mp\theta_1-\theta_t-\theta_\infty,\, 1-\theta_0\mp\theta_1-\theta_t+\theta_\infty,\, 1\mp 2\theta_1,\, 1-2\theta_0; \; 1-z\Bigr). \end{aligned}

[1] J. Ren and Z. Yu, Holographic thermal correlators from recursions, JHEP 06 (2025) 183 [arXiv:2412.02608].